МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ САМАРСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ САМАРСКОЙ ОБЛАСТИ «САМАРСКИЙ МЕТАЛЛУРГИЧЕСКИЙ КОЛЛЕДЖ»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ РАБОТ

МДК.02.02.Технология газовой сварки

МДК.02.04. Технология электродуговой сварки

ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ - ПРОГРАММЫ ПОДГОТОВКИ КВАЛИФИЦИРОВАННЫХ РАБОЧИХ, СЛУЖАЩИХ

по профессии 15.01.05 Сварщик (ручной и частично механизированной сварки)

Аннотация

В методических указаниях приведены расчеты режимов сварки:

- ручной дуговой покрытыми электродами;
- в среде углекислого газа;
- механизированной и автоматической под слоем флюса;
- электрошлаковой пластинчатыми и проволочными электродами.

Методические указания содержат подробную последовательность определения параметров режимов сварки, сопровождающихся указанием необходимых формул, таблиц, графиков и номограмм, что позволит студентам самостоятельно рассчитать режимы сварки для различных толщин свариваемых металлов.

СОДЕРЖАНИЕ

Введение	4
1. Общие положения	5
2. Расчет режимов ручной дуговой сварки	6
2.1. Расчет режима сварки швов стыковых соединений	6
2.2. Расчет режима сварки угловых швов	12
3. Расчет режимов сварки в среде углекислого газа	15
3.1. Расчет режима сварки в среде углекислого газа швов стыковых	15
соединений	
3.2. Расчет режима сварки в среде углекислого газа угловых швов	19
сварных соединений	
4. Расчет режимов механизированной (полуавтоматической) и	22
автоматической сварки под слоем флюса	
4.1. Расчет режима сварки швов стыковых соединений	22
4.2. Расчет режима сварки угловых швов сварных соединений	25
5. Расчет режимов электрошлаковой сварки	29
5.1. Расчет режима электрошлаковой сварки проволочными	31
электродами	
5.2. Расчет режима электрошлаковой сварки пластинчатыми	35
электродами	
Заключение	40
Приложение А. Ориентировочные режимы ручной дуговой сварки	41
Приложение Б. Ориентировочные режимы полуавтоматической	43
(механизированной) и автоматической сварки в среде углекислого газа	
Приложение В. Ориентировочные режимы сварки под флюсом	51
Приложение Г. Ориентировочные режимы электрошлаковой сварки	53
6. Список используемой литературы	55

Введение

Методические указания по проведению практических занятий адресовано студентам очной формы обучения по профессии 150709.02. Сварщик (электросварочные и газовые работы)

, специализация Технологии в сварочном производстве и предназначено для выполнения практических занятий и раздела «Расчет режимов сварки».

В данном пособии приводятся расчеты режимов:

- ручной дуговой покрытыми электродами;
- механизированной и автоматической в среде углекислого газа;
- автоматической и полуавтоматической под флюсом;
- электрошлаковой сварки стыковых и угловых швов сварных соединений.

1. Общие положения

- 1. При описании раздела «Расчет режимов сварки» следует:
- а) дать определение режима, принятого для изготовления сварной конструкции вида сварки;
- б) перечислить основные и дополнительные параметры режима выбранного вида сварки;
- в) для примера привести расчет режима сварки стыкового или углового шва сварной конструкции, для чего сделать эскиз этого соединения в соответствии с типом соединения по ГОСТу на выбранный вид сварки.
- 2. Основные типы соединений, выполняемых под флюсом, регламентированы **ГОСТ 8713-79** «Сварка под флюсом, соединения сварные. Основные типы, конструктивные элементы и размеры».
- 3. Основные типы соединений, выполняемых в среде защитных газов также регламентированы **ГОСТ 14771-76** «Швы сварных соединений. Электродуговая сварка в защитных газах. Основные типы и конструктивные элементы».
- 4. Основные типы соединений, выполняемых электрошлаковой сваркой регламентированы ГОСТ 15164-78 «Электрошлаковая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры».
- 5. Основные типы соединений, выполняемых ручной дуговой сваркой регламентированы **ГОСТ 5264-80** «Ручная дуговая сварка. Соединения сварные. Основные типы и конструктивные элементы».
 - 6. Результаты расчетов режимов сварки следует занести в таблицу.

2. Расчет режимов ручной дуговой сварки

Режимом сварки называют совокупность основных характеристик сварочного процесса, обеспечивающую получение сварных швов заданных размеров, формы и качества.

При ручной дуговой сварке основными параметрами режима являются

- 1. Диаметр электрода, $d_{\text{эл}}$, мм.
- 2. Сила сварочного тока, I_{cb} , A.
- 3. Напряжение на дуге, U_{π} , В.
- 4. Скорость сварки, $V_{cв}$, м/ч.

Дополнительными параметрами режима являются:

- 5. Род тока.
- 6. Полярность тока (при постоянном токе).

2.1. Расчет режима сварки швов стыковых соединений

Швы стыковых соединений могут выполнятся с разделкой и без разделки кромок по ГОСТ 5264-80.

Диаметр электрода при сварке швов стыковых соединений выбирают в зависимости от толщины свариваемых деталей.

При выборе диаметра электрода при сварке стыковых швов в нижнем положении следует руководствоваться данными таблицы 1.

Таблица 1 - Рекомендуемые диаметры электродов при сварке стыковых швов в нижнем положении, мм

Толщина свариваемых деталей	Рекомендуемый диаметр электрода
1,5	1,6
2,0	2,0

3,0	3,0
4 - 5	3 - 4
6 - 8	4,0
9 - 12	4 - 5
13 - 15	5,0
16 - 20	5 - 6
21 - 24	6 – 10

При сварке многослойных швов на металле толщиной 10-12 мм и более первый слой должен свариваться электродами на 1 мм меньше, чем указано в таблице 1, но не более 5 мм (чаще всего 4 мм), так как применение электродов больших диаметров не позволяет проникнуть в глубину разделки для провара корня шва.

При определении числа проходов следует учитывать, что сечение первого прохода не должно превышать 30-35 мм² и может быть определено по формуле:

$$F_1 = (6-8) \cdot d_{3\pi}, MM^2,$$
 (1)

а последующих проходов – по формуле:

$$F_c = (8 - 12) \cdot d_{3\pi}, MM^2,$$
 (2)

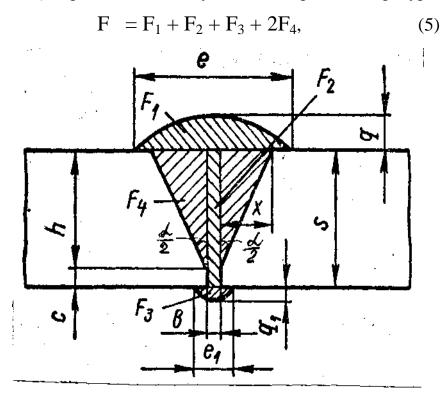
где F_1 – площадь поперечного сечения первого прохода, мм²;

 F_c – площадь поперечного сечения последующих проходов, мм²;

 $d_{\scriptscriptstyle \mathfrak{I}\!\!J}$ — диаметр электрода, мм.

Для определения числа проходов и массы наплавленного металла требуется знать площадь сечения швов.

Площадь сечения швов представляет собой сумму площадей элементарных геометрических фигур, их составляющих. Тогда площадь сечения одностороннего стыкового шва выполненного без зазора можно определить по формуле:


$$F_1 = 0.75 \text{ e} \cdot \text{g}, \text{mm}^2,$$
 (3)

а при наличии зазора в соединении – по формуле:

$$(F_1 + F_2) = 0.75 \text{ e} \cdot \text{g} + \text{S} \cdot \text{B}, \text{MM}^2,$$
 (4)

где е — ширина шва, мм; g — высота усиления шва, мм; S — толщина свариваемого металла, мм; в — величина зазора в стыке, мм.

Площадь сечения стыкового шва с V-образной разделкой и с подваркой корня шва (см. рис. 1) определяется как сумма геометрических фигур:

Pисунок. I. Γ еометрические элементы площади сечения стыкового шва: где S — толщина металла, мм; h — глубина проплавления, мм; c — величина притупления, мм; e — ширина шва, мм; e_1 — ширина подварки корня шва, мм; g — высота усиления шва, мм; g_1 — высота усиления подварки корня шва, мм; g — угол разделки кромок.

Глубина проплавления определяется по формуле:

$$h = (S - c), MM.$$
 (6)

Площадь сечения геометрических фигур $(F_1 + F_2)$ определяют по формуле 4, F_3 – по формуле 3, а площадь прямоугольных треугольников F_4 определяют по формуле:

$$F_4 = h \cdot x/2, MM^2, \tag{7}$$

где $x = h \cdot tg \alpha/2$;

тогда:

$$F_4 = (h^2 \cdot tg \alpha/2) / 2, MM^2,$$
 (8)

Но рассматриваемая нами площадь V-образного шва состоит из двух прямоугольных треугольников, поэтому:

$$2F_4 = h^2 \cdot tg \, \alpha/2, \, MM^2$$
. (9)

Подставляя значения элементарных площадей в формулу (5), получим:

$$F_H = 0.75 \cdot e \cdot g + B \cdot S + 0.75 e_1 \cdot g_1 + h^2 \cdot tg \alpha/2, MM^2.$$
 (10)

При X-образной разделке площадь наплавленного металла подсчитывают отдельно для каждой стороны разделки.

Зная общую площадь поперечного сечения наплавленного металла (F_H) , а также площадь поперечного сечения первого (F_1) и каждого из последующих проходов шва (F_c) , находят общее число проходов «n» по формуле:

$$n = (F_n - F_1 / F_c) + 1. (11)$$

Полученное число округляют до ближайшего целого.

Расчет сварочного тока при ручной дуговой сварке производится по диаметру электрода и допускаемой плотности тока по формуле:

$$I_{cB} = F_{ga} \cdot j = (\pi \cdot d_{ga}^2 / 4) \cdot j, A,$$
 (12)

где $\pi - 3.14$;

j – допустимая плотность тока, A/mm^2 ;

 $F_{\text{эл}}$ – площадь поперечного сечения электрода, мм²;

 $d_{\text{эл}}$ – диаметр электрода, мм.

Сварочный ток определяется для сварки первого прохода и последующих проходов только при сварке многопроходных швов.

Допустимая плотность тока зависит от диаметра электрода и вида покрытия: чем больше диаметр электрода, тем меньше допустимая плотность тока, так как ухудшаются условия охлаждения (см. табл. 2).

 Таблица 2 - Допустимая плотность тока в электроде при ручной дуговой сварке

Вид покрытия	Диаметр стержня электрода, мм				
	2	3	4	5	6 и более
Основное	15,0-20,0	13,0-18,5	10,0-14,5	9,0-12,5	8,5-12,0
Кислое,	14,0-20,0	13,5-19,0	11,5-15,0	10,0-13,5	9,5-12,5
рутиловое					

Напряжение на дуге при ручной дуговой сварке изменяется в пределах 20-36 В и при проектировании технологических процессов ручной дуговой сварки не регламентируется.

Поэтому напряжение на дуге следует принять какое – то конкретное.

Скорость перемещения дуги (скорость сварки) следует определять по формуле:

$$V_{cB} = L_{H} \cdot I_{cB} / \gamma \cdot F_{H} \cdot 100, \, \text{m/y}, \qquad (13)$$

где $L_{\rm H}$ – коэффициент наплавки, г/A час; (см. табл. 3)

 γ — плотность наплавленного металла за данный проход, г/см 3 (7,8 г/см 3 — для стали);

 I_{cb} – сила сварочного тока, A;

 $F_{\rm H}$ – площадь поперечного сечения наплавленного металла, мм 2 .

Скорость перемещения дуги (скорость сварки) определяют для первого прохода и последующих проходов только при сварке многопроходных швов. Результаты расчета режима сварки стыкового шва следует занести в табл. 3.

Таблица 3 - Режимы сварки стыкового шва и его размеры

Сварка	Режимы сварки			
	$d_{\scriptscriptstyle ЭЛ}$, мм	I _{cB} , A	U д, В	$V_{cB, M}/q$
Первого прохода				
Последующих проходов				

Расчет режима сварки угловых швов

При сварке угловых швов диаметр электрода выбирается в зависимости от катета шва.

Примерное соотношение между диаметром электрода и катетом шва при сварке угловых швов приведено в табл. 4.

 Таблица 4 - Рекомендации по выбору диаметра электрода при сварке угловых

 швов

Катет шва, К, мм	2	3	4	5	6-8	9-12	12-20
Рекомендуемый диаметр	1,6-2	2,5-3	3-4	4,0	4-5	5,0	5,0
электрода, $d_{\scriptscriptstyle 3Л}$, мм							

При ручной дуговой сварке за один проход могут свариваться швы катетом не более 8 мм.

При больших катетах швов сварка производится за два и более проходов Максимальное сечение металла, наплавленного за один проход, не должно превышать $30 - 40 \text{ мм}^2$ (Fmax = $30 \div 40 \text{ мм}^2$).

Площадь поперечного сечения углового шва, которую необходимо знать при определении числа проходов, рассчитывают по формуле:

$$F_{H} = K_{V} \cdot K^{2} / 2 \text{ MM}^{2}, \qquad (14)$$

где $F_{\rm H}$ – площадь поперечного сечения наплавленного металла, мм 2 ;

К – катет шва, мм;

 K_y – коэффициент увеличения, который учитывает выпуклость шва и зазоры.

Для наиболее часто встречающихся угловых швов с катетом $2-20\,$ мм, коэффициент K_v выбирают по табл. 5.

Таблица 5 - Рекомендации по выбору коэффициента увеличения, учитывающий выпуклость шва и зазоры

Катет шва, К, мм	2	3-4	4-5	6-8	9-12	12-20
Коэффициент увеличения (K _y)	1,8	1,5	1,35	1,25	1,15	1,10

Определив примерную площадь сечения углового шва и зная максимально возможную площадь сечения, получаемую за один проход, находят число проходов «n» по формуле:

$$n = F_n / (30-40).$$
 (15)

Полученное дробное число округляют до ближайшего целого.

Силу сварочного тока определяют по формуле:

$$I_{cB} = (\pi \cdot d^2_{a\pi}/4) \cdot i, \qquad (16)$$

где $\pi - 3,14$;

 $d_{\text{эл}}$ – диаметр электрода, мм;

j – допустимая плотность тока, $A/мм^2$.

Плотность тока выбирается в пределах, рекомендуемых табл. 2.

Напряжение на дуге при ручной дуговой сварке изменяется в пределах 20-38 В. Следует принять какое - то конкретное.

Скорость сварки определяют по формуле:

$$V_{cB} = L_{H} \cdot I_{cB} / \gamma \cdot F_{H} \cdot 100, \text{ M/H}, \qquad (17)$$

где $L_{\rm H}$ – коэффициент наплавки, г/A час;

 γ – плотность наплавленного металла, г/см 3 (7,8 г/см 3 – для стали);

 $F_{\mbox{\tiny H}}$ – площадь поперечного сечения наплавленного металла углового шва, $\mbox{cm}^2;$

 I_{cb} – сила сварочного тока, A.

Значения коэффициентов наплавки для различных марок электродов приведены в табл. 6.

Таблица 6 - Коэффициенты наплавки для различных марок электродов

Марка электрода	Ток и полярность	Напряжение на	Коэффициент
		дуге, В	наплавки, г/А·ч
УОНИИ 13/45	Постоянный	20 – 25	8,0
УОНИИ 13/55	прямой	22 – 26	7,0 – 8,0
ЦМ - 7	полярности	27 – 30	10,0
AHO – 4C	Переменный	32 - 34	8,0 – 8,3

Результаты расчетов режима сварки угловых швов следует занести в табл. 7.

Таблица 7 - Режимы сварки угловых швов

Сварка	Режимы сварки			
	$d_{\scriptscriptstyle ЭЛ}$, мм	I _{cB} , A	U д, В	$V_{cB, M}/q$
Первого прохода				
Последующих проходов				

Ориентировочные режимы ручной дуговой сварки приведены в приложении А.

3. Расчет режимов сварки в среде углекислого газа

Сварка в среде углекислого газа широко применяется при изготовлении конструкций из углеродистых, низколегированных, теплоустойчивых сталей, среднелегированных, хромоникелевых и аустенитных сталей.

Основные типы соединений, выполняемые в среде углекислого газа, регламентированы ГОСТ 14771-76.

Основными параметрами режима сварки в среде углекислого газа являются:

- 1. Диаметр электродной проволоки, $d_{\text{эл,}}$ мм.
- 2. Сила сварочного тока, I_{cb} , A.
- 3. Напряжение на дуге, $U_{\text{д}}$, B.
- 4. Скорость сварки, V_{cs} , м/ч.
- 5. Расход защитного газа, $q_{r.}$

Дополнительными параметрами режима являются:

- 6. Род тока.
- 7. Полярность при постоянном токе.

3.1. Расчет режима сварки в среде углекислого газа швов стыковых соединений

Швы стыковых соединений могут выполняться как с разделкой, так и без разделки кромок.

Диаметр электродной проволоки $(d_{\text{эл}})$ выбирается в зависимости от толщины свариваемых деталей. При выборе диаметра электродной проволоки при сварке швов в нижнем положении следует руководствоваться данными таблицы 8

Таблица 8 - *Выбор диаметра электродной проволоки для сварки швов стыковых соединений*

Толщина	Форма	Зазор в стыке,	Диаметр	Число
металла, мм	подготовки	MM	электродной	проходов
	кромок		проволоки, мм	
1	2	3	4	5
0,8-1,0	Встык, без	0-1,0	0,8	1
1,5-2,0	разделки кромок	0-1,0	1,0	1
2,5-3,0		0-1,5	1,2	1
3,5-4,0		0-1,5	1,2	2
			0,6	1
4,5-6,0		0-1,5	2,0	1
		0,5-2,0	2,0	2
7,0-8,0		0,5-2,0	2,0	2
9,0-10,0		0,5-2,5	2,0	2
11,0-12,0		1,0-3,0	2,0	2
13,0-14,0	V – образная	1,0-2,5	2,0	2
15,0-16,0	односторонняя	1,0-2,5	2,0	3
17,0-18,0	V – образная	1,0-2,5	2,0	4
19,0-20,0	двусторонняя	1,5-2,5	2,0	4
21,0-22,0		1,5-2,5	2,0	5
23,0-24,0		1,5-2,5	3,0	5
25,0-28,0		1,5-2,5	3,0	6

Сила сварочного тока, (I_{cB}) выбирается в зависимости от глубины провара (h) и определяется по табл. 9.

Таблица 9 - Определение сварочного тока в зависимости от глубины провара

Толщина свариваемых	Формула определения
деталей, мм	сварочного тока
Меньше или равна 2	$I_{cB} = (90-100) \cdot h$
Меньше и равна 5	$I_{cb} = (80-90) \cdot h$
Больше 5	$I_{cb} = (70-80) \cdot h$

Глубина провара (h) при сварке с первой стороны определяется по формуле:

$$h = S / 2 \pm 1 MM,$$
 (18)

где S – толщина свариваемых деталей, мм.

Напряжение на дуге ($U_{\rm A}$) выбирается по табл. 10.

Таблица 10 - Напряжение на дуге в зависимости от силы сварочного тока

Сила сварочного тока, А	Напряжение на дуге, В
50-100	17-20
120-150	21-23
160-200	24-27
210-250	25-30
260-300	30-34
310-450	32-34
460-500	32-34

Скорость сварки (V_{cb}) определяют по табл. 11.

 Таблица 11 - Определение скорости сварки в зависимости от диаметра

 электродной проволоки

Диаметр электродной проволоки, мм	Формула для определения скорости
	сварки, м/ч
0,8-1,6	$V_{\rm cb} = \frac{5000 - 6000}{I}$
1,8-2,6	$V_{cb} = \frac{8000 - 12000}{I}$
3,0-4,0	$V_{\rm CB} = \frac{20000 - 25000}{I}$

Расход углекислого газа (q $_{\mathbf{r}}$) выбирают по данным табл.12 в зависимости от марки свариваемого металла и толщины металла.

Таблица 12 - *Расход углекислого газа в зависимости от толщины свариваемого металла стыкового соединения*

Толщина металла, мм	Расход углекислого газа, л/мин
1,0-3,0	8-10
4,0-8,0	15-16
9,0-12,0	18-20
13,0-28,0	24-25

Результаты расчета режима сварки стыкового шва следует занести в табл.

Таблица 13 - Режимы сварки стыкового шва в среде углекислого газа

13.

Толщина	Эскиз		Параметры режима				Расход
металла,	соединения	$d_{\scriptscriptstyle \mathfrak{I}}$,	$d_{\scriptscriptstyle 3Л},$ $I_{\scriptscriptstyle CB},$ A $U_{\scriptscriptstyle Д},$ $_{\scriptscriptstyle M}/_{\scriptscriptstyle H}$ $V_{\scriptscriptstyle CB},$ Число				газа,
MM		MM			м/ч	проходов	л/мин
						"n"	

3.2. Расчет режима сварки в среде углекислого газа угловых швов сварных соединений

При сварке угловых швов **диаметр электродной проволоки** выбирается в зависимости от толщины металла по табл. 14.

Таблица 14 - Выбор диаметра электродной проволоки для сварки угловых швов

Толщина	Форма	Катет шва,	Зазор в	Диаметр	Число
металла,	подготовки	MM	стыке,	электрод.	проходов
MM	кромок			проволоки,	«n»
				MM	
0,8-1,0		1	1	0,5-1,0	1
1,5-2,0		2-3	1	0,8-1,2	1
3,0-4,0		3-6	1	1,2	1
4,0-5,0		5-6	1	1,2	2
	Угловое			1,6	1
5,0-6,0	без	5-6	1	2,0	1

17

7,0-8,0	разделки	6-9	1	2,0	2
9,0-10,0	кромок	9-11	1	2,0	2
11,0-13,0		11-14	1	2,0	3
14,0-16,0		13-16	1	2,0	5
			1	2,5	4
17,0-20,		20-22	1,5	2,0	9
				2,5	8
21,0-28,0		24-27	1,5	2,0	12
				3,0	9

Напряжение на дуге $(U_{_{\rm J}})$, силу тока $(I_{_{\rm CB}})$, скорость сварки $(V_{_{\rm CB}})$ определяют по номограмме (рис. 2).

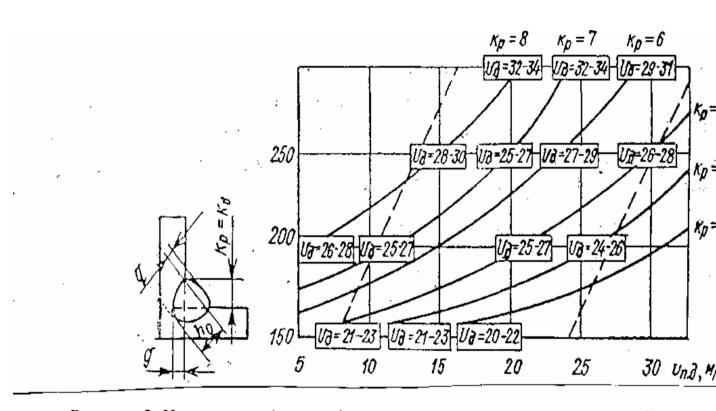


Рисунок. 2. Номограмма для определения режимов полуавтоматической сварки в среде углекислого газа угловых швов диаметром электродной проволоки 1,6 мм

Чтобы определить режим сварки, обеспечивающий необходимый катет шва, выбирают точку, лежащую на линии заданного катета (Кр), в области, ограниченной штриховыми линиями, в зависимости от того, какой шов требуется получить: вогнутый, плоский или выпуклый.

Из этой точки провести линии на ось ординат, где получим значение сварочного тока, и ось абсцисс, где получим значение скорости сварки.

Напряжении на дуге берется в ближайшем прямоугольнике.

Расход углекислого газа выбирается по табл. 15.

Таблица 15 - *Расход углекислого газа в зависимости от толщины свариваемого углового соединения*

Толщина металла, мм	Расход углекислого газа,
	л/мин
0,8-4,0	9-10
5,0-8,0	12-18
9,0-16,0	18-20
17,0-20,0	20-22
21,0-28,0	22-24

Результаты определения режимов сварки угловых швов следует занести в табл. 16.

Таблица 16 - Режимы сварки углового шва в среде углекислого газа

Толщина	Эскиз		Параметры режима				Расход	
металла,	соединения	Катет	d _{эл} ,	I _{cB} , A	U _д ,	V_{cB}	Число	газа,
MM		шва,	MM		м/ч	м/ч	проходов	л/мин
		MM						

Ориентировочные режимы механизированной (полуавтоматической) и автоматической сварки приведены в приложении Б

4. Расчет режимов механизированной (полуавтоматической) и автоматической сварки под слоем флюса

Конструктивные элементы подготовки кромок и виды сварных соединений (стыковые, угловые, тавровые, нахлесточные) для автоматической и механизированной сварки под слоем флюса регламентированы ГОСТ 8713-79.

Основными параметрами режима автоматической и механизированной сварки под слоем флюса, оказывающим влияние на размеры и форму шва, являются:

- 1. Диаметр электродной (сварочной) проволоки, $d_{\text{эл}}$, MM.
- 2. Сила сварочного тока, $I_{cв}$, A.
- 3. Напряжение на дуге, U_{π} , B.
- 4. Скорость подачи электродной проволоки, $V_{\pi.\pi.}$, м/ч.
- 5. Скорость сварки, $V_{cв}$, м/ч.

Дополнительными параметрами режима являются:

- 6. Род тока.
- 7. Полярность (при постоянном токе).
- 8. Марка флюса.

Расчет режима сварки швов стыковых соединений

Расчет режима сварки начинают с того, что задают требуемую **глубину провара** при сварке с первой стороны, которая устанавливается равной:

$$h = S/2 \pm (1-3)$$
, MM, (19)

где S – толщина металла, мм.

Силу сварочного тока, необходимую для получения заданной глубины проплавления основного металла, рассчитывают по формуле:

$$I_{cB} = (80-100) \cdot h, A.$$
 (20)

Диаметр сварочной проволоки рассчитывают по формуле:

где I_{cs} – сила сварочного тока, A; π – 3,14;

 ${f j}$ – плотность тока, приближенные значения которой приведены в табл. 17.

 Таблица 17 - Допускаемая плотность тока в электродной проволоке при автоматической сварке стыковых швов

Диаметр	6	5	4	3	2	1
электродной						
проволоки,						
MM						
Допускаемая	25-45	30-50	35-60	45-90	65-200	90-400
плотность						
тока, A/mm^2						

Напряжение на дуге принимают для стыковых соединений в пределах 32-40 В. Большему току и диаметру электрода соответствует большее напряжение на дуге. Выбрать конкретное напряжение.

Определяют коэффициент наплавки (L_H), который при сварке постоянным током обратной полярности $L_H = 11,6\pm0,4\,$ г/А ч, а при сварке на постоянном токе прямой полярности и переменном токе по формуле:

$$L = A + B \cdot I_{cB}/d_{n}, \Gamma/A \cdot \Psi, \qquad (22)$$

где I_{cb} – сила сварочного тока, A;

А, В – коэффициенты, значения которых приведены в табл. 18.

Таблица 18 - Значения коэффициентов А и В

Марка флюса	Коэффициент А		Коэффициент В	
	Постоянный Переменный		Постоянный	Переменный
	ток прямой	ток	ток прямой	ток
	полярности		полярности	
AH-348A	2,3	7,0	0,065	0,040

AH-348	2,8	7,3	0,095-0,120	0,048-0,058
АН-348Ш	1,4	6,0	0,081	0,038

Скорость сварки электродной проволокой диаметром 4-6 мм определяют по формуле:

$$V = (20-30) \cdot 10^3 / I_{cB}, \text{ M/H}; \qquad (23)$$

а электродной проволокой диаметром 2 мм по формуле

$$V = (8-12) \cdot 10^3 / I_{cr}, \text{ M/H}. \tag{24}$$

Скорость подачи сварочной проволоки_ $(V_{n.n.})$ определяют по формуле:

$$V_{\text{п.п.}} = 4 \cdot L_{\text{H}} \cdot I_{\text{cB}} / \pi \cdot d_{\text{эл}}^{2}, \text{ м/ч},$$
 (25)

где L_H – коэффициент наплавки, г/A·ч; π – 3,14;

 $d_{\text{эл}}$ – диаметр электродной проволоки, мм;

 γ – удельный вес наплавленного металла, г/см 3 (7,8 г/см 3 – для стали);

 $I_{c \text{B}}$ – сила сварочного тока, A.

Результаты, расчетов режима сварки стыковых соединений следует занести в табл. 19.

Таблица 19 - Режимы сварки стыкового шва

Зазор в	Режимы сварки					
стыке, мм	$d_{\scriptscriptstyle 3Л},$ мм $I_{\scriptscriptstyle CB},$ А $U_{\scriptscriptstyle g},$ В $V_{\scriptscriptstyle CB},$ М/ч $V_{\scriptscriptstyle \Pi.\Pi.}$ М/ч					

4.2. Расчет режима сварки угловых швов сварных соединений

Расчет режима сварки ведется в следующей последовательности:

Зная катет шва (К), определяют площадь поперечного сечения наплавленного металла, которая для шва без выпуклости высоты усиления определяется по формуле:

$$F_H = \frac{K^2}{2}, \text{ MM}^2,$$
 (26)

где К – катет шва, мм;

а для шва с выпуклостью (с высотой усиления) – по формуле:

$$F_H = \frac{K^2}{2} + 1,05K \bullet g , \text{MM}^2 ,$$
 (27)

где g – выпуклость углового шва величины усиления, мм.

Выбирают диаметр электродной проволоки. Следует иметь в виду, что угловые швы с малым катетом (K=3-4мм) можно получить при использовании проволоки диаметром 2 мм; швы с катетом (K=5-6мм), получают при сварке проволокой диаметром 4-5 мм. Сварка диаметром более 5 мм не обеспечивает необходимого провара вершины углового шва и поэтому практического применения не находит, максимальный катет углового шва, который можно получить за один проход, независимо от диаметра электродной проволоки, равен 10 мм.

Для принятого диаметра электрода подбирают **плотность тока** по таблице 21, а затем определяют **силу сварочного тока** по формуле:

$$I_{cB} = \pi \cdot d_{9\pi}^{2} / 4 \cdot j, A,$$
 (28)

где \mathbf{j} – допускаемая плотность тока в электродной проволоке при сварке угловых швов (табл. 20); π – 3,14;

 $d_{\text{эл}}$ – диаметр электродной проволоки, мм.

Таблица 20 - Допускаемая плотность тока в электродной проволоке при сварке угловых швов

Диаметр	5	4	3	2
электродной				
проволоки, мм				
Допускаемая	30-40	35-50	50-85	60-150
плотность				
тока, A/mm^2				

Затем по рис. 3, зная величину сварочного тока и диаметр электродной проволоки, устанавливают оптимальное **напряжение на дуге** ($U_{\rm I}$).

При этом следует выбирать значения напряжения на дуге ближе к нижнему пределу диапазона оптимальных напряжений.

Рисунок. 3. Зависимость Ψ_{np} ст величины сварочного тока и напряжения на дуге. Ток переменный. Флюс марки ОСЦ-45: $a-d_{_{9,n}}=2$ мм; $6-d_{_{9,n}}=4$ мм; $8-d_{_{9,n}}=5$ мм; $2-d_{_{9,n}}=6$ мм.

Зная площадь сечения наплавленного металла за один проход определяют скорость сварки по формуле:

$$V = L_{H} \cdot I_{CB} / F_{H} \cdot \gamma, M/q, \qquad (29)$$

где L_H - коэффициент наплавки электродной проволоки, г/A · час;

 I_{cb} – сила сварочного тока, A;

 F_{H} – площадь наплавленного металла, см 2 ;

Y – удельный вес наплавленного металла, г/см³ (7,8 г/см³ – для стали).

Скорость подачи электродной проволоки $(V_{n.n.})$ определяется по формуле:

$$V_{\text{п.п.}} = 4 \cdot L_{\text{H}} \cdot I_{\text{CB}} / F_{\text{H}} \cdot \gamma, \text{ M/H},$$
 (30)

где L_H -коэффициент наплавки, г/A час;

 $I_{\text{св}}$ - сила сварочного тока, A;

 γ — удельный вес наплавленного металла, г/см³ (7,8 г/см³ — для стали).

Результаты расчета режима сварки и размеров угловых швов следует свести в табл. 21.

Таблица 21 - Режимы сварки углового шва

Зазор в	Режимы сварки							
стыке, мм	$d_{\scriptscriptstyle 3Л},$ мм $I_{\scriptscriptstyle CB},$ A $U_{\scriptscriptstyle g},$ B $V_{\scriptscriptstyle CB},$ м/ч $V_{\scriptscriptstyle П.П.}$ м/ч							

Расчет режимов электрошлаковой сварки

При электрошлаковой сварке электродом может служить не только проволока, но и электроды в виде пластин, стержней.

Пластинчатые электроды применяются главным образом при большой толщине свариваемых деталей и небольшой высоте швов жидкого металла и перегретого шлака. Электрошлаковая сварка может быть осуществлена одним проволочным электродом диаметром 2 или 3 мм без поперечных колебаний и с постоянной скоростью подачи проволоки в шлаковую ванну при сварке металла толщиной до 50 мм. При сварке больших толщин применяют двух-, трех- и многоэлектродную сварку проволочными электродами без поперечных или с поперечными колебаниями.

Электрошлаковой сваркой можно выполнить любой тип соединений, регламентированных ГОСТ 15164-79.

Основными параметрами режима электрошлаковой сварки являются:

- 1. Диаметр электродной проволоки, $d_{\text{эл.}}$
- 2. Сила сварочного тока, $I_{cв}$, A.
- 3. Напряжение на шлаковой ванне, $U_{\text{ш.в.}}$, B.
- 4. Скорость сварки, V_{cB} , M/q.
- 5. Скорость подачи электрода, $V_{\text{п.э.}}$, м/ч.
- 6. Скорость поперечных перемещений электрода, $V_{\text{п.п.}}$, м/ч.

Дополнительными параметрами режима являются:

- 7. Сухой вылет электрода, l_c , сек.
- 8. Время выдержки у ползуна при сварке с поперечными колебаниями, $b_{\scriptscriptstyle B},$ сек.
- 9. Число сварочных проволок-электродов, $n_{\text{эл}}$.

- 10.Величина зазора в стыке, В, мм.
- 11. Глубина шлаковой ванны, $h_{\text{шл}}$, мм.
- 12. Недоход электрода до ползуна.
- 13. Марка флюса.
- 14. Расстояние между электродами, l_3 , MM.

Электрошлаковую сварку можно выполнить проволочными и пластинчатыми электродами в зависимости от толщины свариваемых деталей.

5.1. Расчет режима электрошлаковой сварки проволочными электродами

По толщине металла устанавливаются **зазор в стыке**, пользуясь рекомендациями таблицы 1, а затем выбирают **диаметр проволочного электрода**. Наиболее рациональное применение проволоки диаметрами 2 и 3 мм, так как увеличение диаметра проволоки приводит к росту ширины провара и уменьшению глубины шлаковой ванны.

Число проволочных электродов (n_{эл}) выбирают по таблице 22.

Таблица 22 - Рекомендации по выбору числа электродов

Число проволочных	Толщина свариваемых листов				
электродов	без поперечных с поперечным				
	колебаний, мм	колебаниями, мм			
1	40-60	60-150			
2	60-100	100-300			
3	100-150	150-500			

Расстояние между электродами l_9 при сварке без поперечных колебаний принимают равным 30-50 мм, при сварке с поперечными колебаниями – 50-180 мм. Выбрать конкретную величину. При числе электродов более трех, количество электродов $n_{\rm эл}$ определяют по формуле:

$$\mathbf{n}_{\rm en} = \mathbf{S} / \mathbf{l}_{\rm e} \,, \tag{31}$$

где S – толщина свариваемого металла, мм;

 1_{9} – расстояние между электродами, мм.

Сухой вылет электрода — расстояние от нижней точки мундштука до поверхности шлаковой ванны (l_c) , находится в пределах 60-70 мм. Выбрать конкретную величину.

Силу сварочного тока (I_{cB}) на одну сварочную проволоку выбирают в зависимости от отношения толщины свариваемого металла к числу электродных проволок по формуле:

$$I_{CB} = A + B \cdot S/n_{AH}, \qquad (32)$$

где S – толщина металла, мм;

 $\mathbf{n}_{\scriptscriptstyle \mathfrak{I}\!\mathsf{J}\!\mathsf{J}}$ – число проволочных электродов;

А – коэффициент, равный 220-280;

В – коэффициент, равный 3,2-4,0.

Сварочный ток с учетом количества проволок определяется по формуле:

$$I_{CB}^{\Pi} = I_{CB} \cdot n_{9\pi^{\bullet}} \tag{33}$$

Напряжение шлаковой ванны ($U_{\text{III} \cdot \text{B}}$.) определяется по формуле:

$$U_{\text{III.B.}} = 12 + \sqrt{125 + S/(0.075 \cdot n_{\text{эл.}})}$$
 (34)

где S – толщина свариваемого металла, мм;

 $\mathbf{n}_{\scriptscriptstyle \mathrm{ЭЛ}}$ — количество проволочных электродов.

Скорость подачи проволочных электродов ($V_{\rm п.э.}$) определяют по формуле:

$$V_{\text{H.9.}} = I_{\text{cB}} / (1,6-2,2), (\text{M/H})$$
 (35)

где $I_{c\text{в}}$ – сила сварочного тока, A.

Скорость сварки (V_{cB}) определяют по формуле:

$$V_{cB} = n_{\mathfrak{I}} \cdot L_{H} \cdot I_{cB}^{n} / \gamma \cdot B \cdot S \cdot K_{y}, \tag{36}$$

где $n_{\text{эл}}$ – количество проволочных электродов;

 $L_{\rm H}$ – коэффициент наплавки, г/А ч ($L_{\rm H}$ = 30 ÷ 35 г/А ч);

 I_{cb} – сила сварочного тока, A;

 γ — плотность наплавленного металла, г/см (7,8 см³ — для стали);

В – величина зазора в стыке, мм;

S – толщина свариваемого металла, мм;

 K_v – коэффициент увеличения, учитывающий выпуклость шва;

$$(K_y = 1,05 - 1,10)$$

Глубина шлаковой ванны (h_{\text{шл}}), от которой зависит устойчивость процесса и ширина провара, определяется по формуле:

$$h_{\text{IIIJ}} = I_{\text{CB}}^{\text{n}} \cdot (0,0000375 \cdot I_{\text{CB}} - 0,0025) + 30 \text{ (MM)},$$
 (37)

где I_{cb} – сила сварочного тока, A;

 $I^{n}_{\ cB}$ — сила сварочного тока с учетом количества проволок, А.

Скорость поперечных перемещений электрода, $U_{\text{п.п.}}$ определяют по формуле:

$$U_{n.n.} = 66-0.22 \cdot S/n_{9JI}, (M/Y)$$
(38)

где S – толщина свариваемого металла, мм;

 $\mathbf{n}_{\text{эл}}$ – количество проволочных электродов.

Время выдержки у ползуна $(t_{\rm B})$ определяют по формуле:

$$t_B = 0.0375 \cdot S/n_{\text{эл.}} + 0.75 \text{ (сек)}$$
 (39)

Недоход электрода до ползунов принимают равным 5-7 мм.

Результаты расчетов режима электрошлаковой сварки проволочным электродом следует занести в табл. 23.

Таблица 23 - Режимы электрошлаковой сварки проволочным электродом

Параметры режима		При с	сварке	
	Одним	Двумя	Тремя	Четырьмя
	электродом	электродами	электродами	электродами
Зазор в стыке, мм				
Диаметр электрода,				
MM				
Сухой вылет				
электрода, мм				
Сила сварочного тока,				
A				
Напряжение шлаковой				
ванны, В				
Скорость подачи				
электрода, м/ч				
Скорость сварки, м/ч				
Глубина шлаковой				
ванны, мм				
Скорость поперечных				
перемещений				
электродов, м/ч				
Время выдержки у				
ползуна сек.				
Недоход электрода до				
ползунов				

5.2. Расчет режимов электрошлаковой сварки пластинчатыми электродами.

Электрошлаковая сварка пластинчатыми электродами применяется для соединения массивных изделий с длиной швов до 1 — 1,5 м. При сварке пластинчатыми электродами сечение деталей в месте стыка должно иметь прямоугольную форму.

Число пластинчатых электродов ($n_{\text{эл}}$) определяют по формуле:

$$n_{\rm эл} = S/(70\text{-}100),$$
 (40)

где S – толщина свариваемого металла, мм.

При толщине деталей до 150 мм допускается сварка одним пластинчатым электродом.

Ширину каждого из электродов (B) определяют по формуле:

$$B = \left[\frac{S - 11 \cdot (n_{_{\mathfrak{I}\mathfrak{I}}} - 1)}{n_{_{\mathfrak{I}\mathfrak{I}}}}\right] \pm 2(mm),\tag{41}$$

где S – толщина свариваемого металла, мм.

 $n_{\rm эл}$ – число пластинчатых электродов.

Число фаз (n_{φ}) выбирают исходя из расчета более равномерной загрузки фаз. При трех и более электродах число фаз, $n_{\varphi}=3$.

Допустимый удельный ток ($i_{доп}$) определяют по формуле:

$$i_{\text{доп}} = (I_{\phi} \cdot n_{\text{эл}})/(S \cdot n_{\phi}), (A/MM)$$
(42)

где I_{φ} – допустимый сварочный ток на каждую фазу, A;

 $\mathbf{n}_{\scriptscriptstyle{\mathrm{ЭЛ}}}$ - количество пластинчатых электродов;

S – толщина свариваемого сечения, мм;

 n_{φ} – число фаз.

Допустимый сварочный ток на каждую фазу I_{φ} принимается равным номинальному току сварочного трансформатора. При сварке аппаратом A-480 с трансформатором ТШС – 3000-3, I_{φ} = 3000A.

Минимальную толщину (S_{min}) пластинчатого электрода находят исходя из условий заполнения разделки. Минимальную толщину электрода в зависимости от отношения H/L определяют по графику, приведенному на рис. 4.

Рисунок. 4. Зависимость между Н/L и минимальной толщиной электрода:

где H – рабочий ход суппорта сварочного аппарата, мм (для аппарата А-480 H = 2300мм);

 L – высота свариваемого сечения (длина шва), включая высоту кармана и выводных планок, которые находятся в пределах 150-200мм.

Найдя по графику минимальную толщину электрода, округляют до ближайшего целого и принимают толщину электрода, δ.

Зазор между кромками свариваемых деталей (в) определяют по формуле:

$$\hat{a} = (\delta + 14) \pm 2 \,(\text{MM}),\tag{43}$$

где δ – толщина пластинчатого электрода, мм.

Величину сварочного тока I_{cb} на каждой фазе определяют по формуле:

$$I_{cB} = n_{db} \cdot B \cdot i_{non} (A), \tag{44}$$

где n_{ϕ} – число фаз;

В – ширина электрода, мм;

 $i_{\text{доп}}$ – удельный допустимый ток, (А/мм).

Глубину шлаковой ванны ($h_{\text{шл}}$) в соответствии с удельным допустимым сварочным током, ($i_{\text{лоп}}$) находят по рис. 5.

Рисунок. 5. График для выбора S. (
$$V_{\scriptscriptstyle ЭЛ}$$
, $h_{\scriptscriptstyle UB}$, $U_{\scriptscriptstyle UB}$)

В процессе сварки допустимы отклонения от найденного значения не более ±3мм.

Напряжение на шлаковой ванне ($U_{\text{ш.в.}}$) определяют по графику рисунка 5 по толщине пластинчатого электрода и скорости подачи электрода.

Для аппарата A-480 скорость подачи электрода, $V_{\text{п.э.}} = 1,03\text{м/ч}$. В процессе сварки допустимы отклонения от найденного значения не более \pm 1B.

Напряжение холостого хода ($U_{x.x.}$) **сварочного трансформатора** зависит от степени жесткости характеристики источника питания.

При применении трансформатора ТШС – 3000- 3 следует принимать:

$$U_{x.x.} = (U_{\text{IIIB}} + 2) \cdot (B)$$
 при $I_{\text{CB}} \le 1500 A$ (45)
 $U_{x.x.} = (U_{\text{IIIB}} + 4) \cdot (B)$ при $I_{\text{CB}} > 1500 A$

Полную длину электрода (Z) определяют по формуле:

$$Z=1,2 \cdot L (1+B+2-\delta/\delta)+T (MM)$$
 (46)

где L – высота свариваемого сечения (длина шва), включая высоту кармана и выводных планок, мм;

В – зазор между свариваемыми кромками, мм;

 δ – толщина пластинчатого электрода, мм;

T — технологический припуск для крепления электродов и токоподвода (T = 300 мм).

Результаты расчетов режима электрошлаковой сварки пластинчатым электродом следует внести в табл. 24.

Таблица 24 - Режимы электрошлаковой сварки пластинчатым электродом

Параметры режима	При сварке				
	Одним	Двумя	Тремя		
	электродом	электродами	электродами		
Ширина электрода, мм					
Число фаз					
Толщина электрода, мм					
Сила сварочного тока, А					
Зазор между кромками, мм					
Напряжение шлаковой ванны, В					
Напряжение холостого хода, В					
Полная длина электрода, мм					

Ориентировочные режимы электрошлаковой сварки низкоуглеродистых, углеродистых, низколегированных, теплоупрочненных сталей и поковок из титана приведены в приложении Г.

Заключение

Методические указания содержат подробную последовательность определения режимов различных видов сварки стыковых и угловых швов, с приведением необходимых формул, рисунков, графиков, номограмм.

В приложениях к указаниям приведены ориентировочные режимы сварки.

Полагаем, что данные указания будут успешно использованы при самостоятельной подготовке студентов к практическим работам или при выполнении раздела расчета режимов сварки.

Режимы ручной дуговой сварки стыковых швов без скоса кромок при односторонней и двусторонней сварке

Толщина	Диаметр	Зазор, мм	Сила сварочного тока при положении			
металла,	электрода,			шва, А		
MM	MM		в нижнем	верти-	горизон-	
				кальном	тальном	
	Односторонний тип шва					
1,0	2,0	0-1	25-35	-	-	
1,5	2,0	0-1	30-50	-	-	
2,0	2,5	0-1	45-70	-	-	
3-4	4,0	1-2	160-200	140-180	130-170	
		Двусторонн	ний тип шва			
5-6	4,0	1-2	200-240	180-220	160-200	
7-8	5,0	1-2	240-300	230-250	170-210	
9-10	6,0	1-2	280-340	250-270	190-220	

Режимы ручной дуговой сварки V-образных стыковых швов

Толщина	Диаметр		Зазор,	Число	Сила сварочного тока при		
металла,	электрода, мм		MM	слоев	положении шва, А		
MM	первый	после-			В	верти-	горизон-
	слой	дующие			нижнем	кальном	тальном
		слои					
10	4,0	5,0	1,5-3,0	2-3	180-260	160-230	150-210
12	4,0	5,0	2,0-3,0	3-4	180-260	160-230	150-210
14	4,0	5,0-6,0	2,0-3,5	5-6	280-330	160-300	150-280
16-18	4,0-5,0	5,0-6,0-	2,5-4,0	4-6	330-420	100-350	150-360
		7,0					

Ориентировочные режимы ручной дуговой сварки стыковых швов стали марки 30XГС

Толщина металла,	Число слоев или	Диаметр	Сила сварочного
MM	проходов	электрода, мм	тока, А
0,5	1	1,5-2,0	10-20
1,0	1	2,0-2,5	20-50
2,0	1	2,5-3,0	40-100
3.0	1	3,0-4,0	80-120

4,0	1	3,0-4,0	90-120
6,0-8,0	1-2	4,0-5,0	120-160
9,0-10,0	3	4,0-5,0	140-180
20,0	5x-6	4,0-5,0-6,0	140-220

Режимы ручной дуговой сварки стыковых и угловых соединений электродами ОММ-5

Толщина	Величина	Диаметр	Сила	Скорость
листа, мм	зазора, мм	электрода, мм	сварочного	сварки, м/ч
			тока, А	
	Стыковое со	единение без разд	делки кромок	
4-5	1,0	5,0	200	24
6,0	1,5	6,0	250	24
8,0	2,0	6,0	350	24
10-12	2,5	6,0	425	24
	У	гловое соединен	ие	
4-6	-	5,0	5,0 250-300	
6-8	_	6,0	300-350	-
10-12	-	6,0	350-800	-

Приложение Б Режимы полуавтоматической (механизированной) и автоматической сварки в углекислом газе низкоуглеродистых и низколегированных сталей

Толщина металла, мм	Катет шва, мм	Зазор, мм	число слоев	Диаметр электродной проволоки, мм	Сила тока, А	Напряжение дуги, В	Скорость сварки, м/ч	Расход газа на один слой, л/мин
		•	Сті	ыковые швы	δI			
1,22,0	-	0,81,0	12	0,81,0	70	1820	1824	1012
					100			
35	-	1,62,0	12	1,62,0	180	2830	2022	1416
					200			
68	-	1,82,2	12	2,0	250	2830	1822	1618
					300			
812	-	1,82,2	23	2,0	250	2830	1620	1820
					300			
	Угловые швы							

1,52,0	1,22,0	-	1	08	6075	1820	1618	68
3,04,0	3,04,0	-	1	1,2	120	2022	1618	810
					150			
5,06,0	5,06,0	-	1	2,0	260	2830	2931	1618
					300			
6,08,0	6,07,0	-	1	2,0	280	2830	2931	1618
					300			
8,010,0	7,09,0	-	12	2,0	300	2830	3032	1719
					320			
10,012,0	7,09,0	-	12	2,0	310	3032	3032	1719
					340			
12,014,0	9,011,0	-	12	2,0	320	3032	3032	1719
					350			
14,016,0	11,014,0	-	3	2,0	330	3032	3032	1820
					350			
16,018,0	13,016,0	-	3	2,0	340	3032	3032	1820
					360			
18,020,0	16,018,0	-	3-4	2,0	340	3032	3032	1820
					360			
22,024,0	22,024,0	-	4-5	2,0	340	3032	3032	1820
					370			

Оптимальные режимы сварки низкоуглеродистых и низколегированных сталей порошковыми проволоками

(нижнее положение)

			/						
Марка	Диаметр	Ст	Стыковой шов,			Угловой шов в лодочку,			
проволоки	проволоки, мм	Сила тока, А	Напряжен ие дуги, В	Скорость подачи проволо- ки, м/ч	Сила тока, А	Напряжен ие дуги, В	Скорость подачи проволо- ки, м/ч		
ПП-1ДСК	1,8	200350	2230		200300	2631	-		
ПП-2ДСК	2,3	400450	2531	382	340380	2932	382		
ПП-АН3	3,2	450525	2632	265	450560	2731	265		
ПП-АН4	2,3	500600	2829	382	440475	3034	382		
ЭПС-15/2	2,2	320360	2932	337	320330	2932	337		

Механические свойства швов при сварке низкоуглеродистых сталей порошковыми проволоками

	порошковани проволоками							
Марка	σ _т , МПа	σ _в , МПа	δ_5 , %	Ударная вязкость (Дж/см ²) при				
проволоки				температуре, ⁰ С				
				+20	-20	-40	-60	

ПП-1ДСК	-	536	26,0	78	43	8	6
ПП-2ДСК	360	481	30,1	160	139	123	84
ПП-АН3	395	514	30,2	-	126	92	27
ПП-АН4	416	530	26,7	-	111	129	27
ПП-АН7	-	520	28,4	199	143	26	12
ЭПС-15/2	416	501	26,6	163	140	63	7

Примерные режимы аргонодуговой сварки вольфрамовым электродом высоколегированных сталей

Толщина	Тип соединения	Сила тока, А	Расход аргона,	Скорость
металла, мм			л/мин	сварки, м/ч
	P_{\cdot}	учная сварка		
1	С отбортовкой	3560	3,5-4	-
2		75120	56	-
3		100140	67	-
1	Встык без разделки	4070	3,54	-
2	кромок с	80130	56	-
3	присадкой	120160	67	-
	Автом	атическая сварі	ка	
1	Встык с присадкой	80140	4	3060
2		140240	67	2030
4		200280	78	1530
1	Встык без	60120	4	3560
2,5	присадки	110200	67	2530
4		130250	78	2530

Примечание: Диаметр присадочной проволоки 1,6...2мм; ток постоянный прямой полярности.

Ориентировочные режимы аргонодуговой сварки встык плавящимся электродом высоколегированных сталей в нижнем положении

Толщина	Подготовка	Число	Диаметр	Сила	Скорость	Расход		
металла, мм	кромок	слоев	сварочной	тока, А	сварки,	аргона,		
			проволоки,		м/ч	л/мин		
			MM					
	Автоматическая сварка							
2	Без	1	1	200210	70	89		
	разделки							
5	V-образная							
	разделка	1	1	260275	44	89		

	под углом 50 ⁰								
10	То же	2	2	330440	1530	1217			
	Полуавтоматическая сварка								
4	Без	1	1,01,6	160300	-	68			
8	разделки V-образная разделка	2	1,62,0	240360	-	1115			

Ориентировочные режимы дуговой сварки высоколегированных сталей без разделки кромок плавящимся электродом в углекислом газе

	ризоелки кромок пливящимся электрооом в углекислом гизе						
Толщина металла, мм	Шов	Диаметр свароч- ной проволоки, мм	Вылет электрода, мм	Сила тока, А	Напряжение дуги, В	Скорость сварки, м/ч	Расход углекислого газа, л/мин
1	Односторонний	1	-	80	16	80	1012
3	То же	2	15	230240	2428	4550	1215
6	Двусторонний	2	15	250260	2830	30	1215
		3	15	350360	3032	-	-
		2	1520	380400	3032	30	1215
8	То же	3	2025	430450	3335	-	-
		2	1520	420440	3032	30	1212
10	То же	3	2530	530560	3436	-	-

Ориентировочные режимы аргонодуговой сварки алюминия трехфазной дугой

Толщина	Способ сварки	Диамет	гр, мм	V _{св} , м/ч	I _{cB} , A	Примечание
металла,		Вольфрамового	Присадочной	$(V_{cB} \cdot 10^3, \text{ M/c})$		
MM		электрода	проволоки			
2	Ручная	1,52	23	1012	60	
				(2,83,3)		Сварка на
6	Ручная	3	3	812	150	весу
				(2,23,3)		
10	Механизированная	8	2	2830	390430	
				(7,88,4)		Сварка без
20	Механизированная	10	2,5	78	520550	разделки
				(1,82,2)		кромок на
30	Механизированная	10	2,5	46	620650	подкладке
	_			(1,11,7)		

Pекомендуемые режимы сварки плавящимся электродом в защитных газах алюминиевых сплавов типа AMг

Толщина	Тип	Число	Диаметр	Ι	Тервый проход		Послед	Последующие пр		
металла,	разделки	проходов	электро	Сила	Напряжение	Ско-	Сила	ке 3	Ι,	
MM			да, мм	тока, А	дуги, В	рость	тока, А	Напряже ние, В	Ско- рость сварки, м/ч	
						сварки,		апр	Скорост рост м/ч	
						м/ч		田	9	
10	-	2	2	250300	2224	2025	370390	2830	20	
15	V-образная	4	2	250300	2426	2025	370390	2830	20	
25	То же	8	2,5	400440	2628	4045	400440	2729	1520	
40	X –	20	2	280	2527	35	370390	2729	27	
50	образная	15	2,5	400	2426	16	420440	2628	23	
	То же									

Примечание. Расход аргона 15...20 л/мин

Ориентировочные режимы аргонодуговой сварки вольфрамовым электродом магниевых сплавов

Объединение	Толщина	Сварочный	Скорость	Присадочна	я проволока	Расход
	листов, мм	ток I_{cb} , A	сварки, м/ч	d, мм	$V_{\Pi O J}, M/H$	аргона, л/мин
		Mexa	анизированная сі	варка		
В стык, без	2	165175	24	2,0	120	1214
разделки,	3	180200	20	2,5	95100	1416
один проход	6	280290	18	2,5	90100	1618
			Ручная сварка			
Встык без	2	100105	-	2,5	-	1214
разделки,	3	180190	-	2,5	-	1214
один проход						
Встык, с	6	200220	-	4,0	-	1618
разделкой,						
три прохода						

Режимы аргонодуговой сварки вольфрамовым электродом, рекомендуемые для листов титана

Толщина металла,	Диаметр,	MM	Сила тока, А	Скорость сварки, м/ч
MM	Присадочного прутка	Электрода		
0,30,7	-	1,6	40	55
0,81,2	-	1,6	6080	4050
1,52,0	2,02,5	2,0	80120	3540
2,53,5	2,02,5	3,0	150200	3540

Режимы аргонодуговой сварки вольфрамовым электродом, рекомендуемые для листов титана

Толщина металла,	Диаме	тр, мм	Сила тока, А	Скорость
MM	Присадочного Электрода			сварки, м/ч
	прутка			
0,30,7	-	1,6	40	55
0,81,2	-	1,6	6080	4050
1,52,0	2,02,5	2,0	80120	3540
2,53,5	2,02,5	3,0	15020	3540

Режимы сварки титана и его сплавов плавящимся электродом в защитных газах

П	1		тт	1	,	
Диаметр	Сила тока, А	Диапазон	Напряжение	Скорость	Вылет	Расход
электрода, мм		свариваемых	дуги, В	сварки, м/ч	электрода, мм	аргона, л/мин
		встык листов				
		(без разделки				
		кромок), мм				
			Сварка в аргоне			
0,60,8	150250	48	2224	3040	1014	2030
1,01,2	280320	510	2428	3040	1720	2535
1,62,0	340520	812	3034	2025	2025	3545
3,0	480750	1434	3234	1822	3035	4050
4,0	680980	1636	3234	1618	3540	5060
5,0	7801200	1636	3438	1416	4045	5060
			Сварка в гелии			
0,60,8	150250	46	2832	3040	1014	3040
1,01,2	280320	48	3236	3040	1720	3545
1,62,0	340520	510	3840	2025	2025	7090
3,0	480750	1028	4248	1822	3035	80100
4,0	680980	1232	4650	1618	4050	100120
5,0	7801200	1232	4652	1416	4555	100120

Приложение В Режимы сварки под флюсом низкоуглеродистых и низколегированных сталей

Толщина	Подготовка	Тип шва и	Диаметр	Сила тока, А	Напряжение	Скорость
металла или	кромок	способ сварки	электропроводной		дуги, В	сварки, м/ч
шва, мм			проволоки, мм			
		А. Автомати	ческая сварка стыко	вых швов		
8	Без разделки,	Односторонний	4	550600	2630	4850
	зазор					
	24 мм					
12	То же	Двусторонний	5	650700	3034	3032
свыше 16	V- образные	Односторонний	5	1й проход	3035	2022
				750800		
				2й проход		
		Б. Автомат	ическая сварка углов	вых швов		
5	Без разделки	Наклонным	2	260280	2830	2830
		электродом				
7	То же	То же		500530	3032	4446
8	«	В лодочку	3	550600	3234	2830
12	«	То же	3	600650	3234	1820

Примечание. Ток постоянный обратной полярности

Режимы сварки титана плавящимся электродом под флюсом AHT-1(скорость сварки 50м/ч)

Толщина	Диаметр	Сила тока, А	Напряжение	Скорость
металла, мм	электродной		дуги, В	подачи,
	проволоки, мм			проволоки,
				м/ч
	Односторонняя	сварка на остают	цейся подкладке	
22,5	2	190220	3436	167175
44,5	2	300320	3438	221239
45	3	310340	3032	95111
	Дв	вусторонняя свар	ка	
8	3	310370	3032	135140
10	3	340360	3032	150155
12	3	350400	3032	160165
15	3	390420	3032	175180

Режимы однопроходной сварки по слою флюса одиночным электродом на формирующей подкладке алюминия и его сплава

Толщина	Диаметр	Плотность	Напряжение	Скорость
метла, мм	электродной	тока, a/mm^2	дуги, В	сварки, м/ч
	проволоки, мм			
4	1,0	130150	2730	2426
8	1,5	100120	2932	2022
12	2,0	100110	3537	1819
16	2,5	7590	3840	1617
20	3,0	7075	3941	1415
25	3,54,0	3040	4042	1213

Приложение Γ

Режимы ЭШС углеродистых, низколегированных, теплоупрочненных сталей для прямолинейных стыков

Сталь	$V_{_{\Pi.\Pi.}}$, $_{M}/_{\Psi}$	Сварочная	Флюсы	Подогрев, ⁰ С
		проволока		
20, M16C,		Св – 10Г2	AH-8M, AH-8	нет
Ст3, 22К, 25Л,				
09Γ2,				
25С, 25ГСЛ,	250			

10ХСНД,		Св-08ХГ2СМ	АН-22, ФЦ-1	нет
10ХГСНД				
35, 35Л, Ст5,	225	Св-08ХГ2СМ	AH-8M, AH-8,	200
20X2MA		Св-08Х3Г2СМ	AH-22	350
14X2ΓMP	20	Св-10ХГН2МЮ	AH-8, AH-8M,	нет
14ХМНДФР			AH-22	

Ориентировочные режимы электрошлаковой сварки низкоуглеродистых сталей

la MM	Сила тока	1e	В	Диаметр	Расстояние	Скорост	гь, м/ч
1 11	на один	Напряжение сварки, В	Число электродов	(сечение)	между	подачи	сварки
Толщина металла, м	электрод,	апряже сварки,	Число ектрод	электро-	электродами	электродов	
Пол Тал	A	прва	H _r	дов, мм			
Л		На	ЭЛ				
		<u>'</u>	Прон	волочный эл	ектрод		
30	350370	3234	1	2,5	-	172	0,91,0
70	650	47			-	371400	1,01,16
90	600620	4246	2	3,0	4550	300	1,6
150	450500	4450			65	220240	0,80,9
200	550	4648			90	250	0,5
250	500550	5055			125	230250	0,40,5
340	400450	4648	3		110	200220	0,3

Технология сварки углеродистых сталей

la ММ	на А	1e	В	Диаметр	Расстояние	Скорост	гь, м/ч
		апряжение сварки, В	Число электродов	(сечение)	между	подачи	сварки
 III III	а тока один ктрод,	ЯЖ	Число ектрод	электро-	электродами	электродов	
Толщина металла, м	Сила тока один электрод,	апряже сварки,	Чı ıeк	дов, мм			
]] Me	Си	На	ЭЛ				
	Пластинчатый электрод						
100	1000	2830	1	10x90	-	1,6	0,5
	1200						

200	1000	2830	2	10x90	-	1,6	0,5
300	1200 1500	3032	3	10x135	-	1,6	0,45
	1800					·	

Режимы электрошлаковой сварки поковок из титана пластинчатым электродом

Толщина металла,	Зазор, мм	Толщина	Сила тока, А
MM		пластинчатого	
		электрода, мм	
3050	2325	810	12001600
5080	2325	810	16002000
80100	2426	1012	20002400
100120	2426	1012	24002800

5. Список используемой литературы:

Основная:

- 1. Думов С.И. Технология электрической сварки плавлением. М.: Машиностроение, 1987. 347 с.
- 2. Думов С.И., «Технология электрошлаковой сварки плавлением». М.: Машиностроение, 1987г.
- 3. Маслов В.И. Сварочные работы. Изд-во М., 1999. 246 с.

- 4. Окерблом Н.О., Демянцевич В.П., Байкова И.П., Проектирование технологии изготовления сварных конструкций. Ленинград: 1983г.
- 5. Потапьевский А.Г., «Сварка в защитных газах плавящимся электродом». М.: Машиностроение. 1974.- 237 с.
- 6. Сварка и свариваемые материалы: В 3-х т. Т. 1. Свариваемость материалов / Под. ред. Э.Л. Макарова. М.: Металлургия, 1991. 528с. Т.2 Технология и оборудование / Под. ред. В.М. Ямпольского. М.: Изд-во МГТУ им. Н.Э. Баумана, 1996. 574с.

Дополнительная:

- 1. ГОСТ 5264-80 Ручная дуговая сварка соединения сварные. Основные типы и конструктивные элементы.
- 2. ГОСТ 8713-79 Сварка под флюсом, соединения сварные. Основные типы, конструктивные элементы и размеры.
- 3. ГОСТ 14771 76 Швы сварных соединений. Электродуговая сварка в защитных газах. Основные типы и конструктивные элементы.
- 4. ГОСТ 15164-78 Электрошлаковая сварка соединения сварные. Основные типы, размеры конструктивных элементы и размеры.